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In  an experimental and theoretical study we model the convection generated in the 
polar oceans when a fresh-water ice wall melts in salt water of uniform far-field tem- 
perature T, and salinity 8,. Our laboratory results show that there are three different 
flow regimes which depend on T, and 8,. First, when T, and S, lie between the 
maximum density curve and the freezing curve, the flow is'only upward. Secondly, for 
the oceanic caae 80 Q Q 36x0 and T, < 20°C, the flow consists of a laminar 
bidirectional flow at the bottom of the ice and a turbulent upward flow along the 
remainder of the ice wall. The laminar flow consists of an upward flowing layer 
approximately 2 mm thick inside of a downward flowing outer layer approximately 
10 mm thick. Thirdly, for the same range of 8, but for T, > 20 "C, the flow reverses: at 
the top of the ice there is a laminar bidirectional flow above a downward turbulent 
flow. To model the turbulent upward flow theoretically, we numerically solve the 
governing equations in similarity form with a spatially varying eddy diffusivity 
that depends on the density difference between the ice-water interface and the 
far-field. The[laborabry data then allows us to evaluay the dependence of eddy 
diffusivity on T, and 8,. The results show that the magnitude of the eddy diffusivity 
is of the same order as the molecular viscosity and that both mass injection a t  the inter- 
face and opposed buoyancy forces must be included in a realistic flow model! Finally, 
we use an integral approach to predict the far-field conditions that yield the high- 
temperature flow reversal and obtain a result consistent with our observations. 

1. Introduction 
Vertical ice walls in the world ocean occur for bot'h sea and glacier ice. For first and 

multi-year sea ice, which at the beginning of the melt season have salinities less than 
47&, the vertical length scales range from 0.6 to 4m. For glacier ice or icebergs, the 
vertical length scales are typically 100 m for the North Atlantic icebergs, and 250 m 
for the Antarctic icebergs. For sea ice, melting occurs during the polar summer for 
ice floating in seawater which is warmed above its freezing point by solar radiation. 
For icebergs, melting occurs throughout the year once the icebergs are advected into 
seawater with temperatures above freezing. 

Because of the difficulty in doing field measurements near large ice masses and at  
the ice edge, investigators use laboratory experiments to understand the melt-driven 
convection. Two different physical phenomena complicate this convection; the 

t Present addreea: Ice Dynamics Project, U.S. Geological Survey, University of Puget 
Sound, Tacoma, WA 98416. 
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FIQURE 1. A T-S diagram for salt-water solutions showing the location of the freezing-point 
depreeaion line T,,, and the maximum density line T,,,,.=. See text for further discueaion. 

existence of low-temperature density maxima for fresh and salt water, and the much 
lower diffusivity of salt compared with heat. For the first case, figure 1 shows how the 
position of the maximum density line, T,,,,, and the freezing-point depression line, 
TfP, divide the temperature-salinity (T-8) diagram for salt-water solutions into two 
parts. The maximum density line comes from the equation of state for sea water 
derived by Gebhart & Mollendorf (1977)' while the freezing line comes from Wewt 
(1977). For S < 35%,, the freezing-point depression temperature q, is nearly linear, 
and can be written as 
where m = 0.060 "C x0-l. 

produces less dense water because the coefficient of salink expansion 

T, = -mS, (1) 

On figure 1, dilution of salt water with fresh water at the same temperature always 

where p is density, is always positive. Cooling, however, produces either less or more 
dense water, depending on whether T and S fall respectively in region I or,II. At  the 
maximum density line, the coefficient of thermal expansion 



Boundary layer adjacent to a vertical melting ice wall 441 

FIQURE 2. A sketch of the observed flow next to the ice for T, < 20 "C and 30 < S, < 35%. 

changes sign. When T and S lie in region I, cooling and dilution produce reinforcing 
upward buoyancy forces. When T and S lie in the oceanographically interesting case 
of region 11, cooling and dilution produce opposing buoyancy forces. 

The present study shows that three different convective boundary layers form 
adjacent to a vertical ice wall, dependent on the values of the far-field temperature T, 
and salinity S, of the surrounding fluid, and on the thermal driving Td defined as 

Td = Tm-T'p(Sm), (3) 

where Tfp(S,) is the far-field freezing point. The thermal driving is a convenient 
parameter with which to characterize our experiments because it is only a function 
of the far-field conditions and hence independent of the unknown ice-water interface 
temperature and salinity. 

Depending on the values of T,, S,, and Td, we obtain the following three flows. First, 
when T, and S, lie in region I, we observe a simple convective boundary layer whose 
thickness increases from the ice bottom. Secondly, when T, and S, lie in region I1 
and for Td < 20deg both a laminar and turbulent boundary layer form. This flow 
which is sketched in figure 2, consists of a laminar upward flowing layer inside of a 
downward flowing layer both below an upward flowing turbulent layer. Dilution 
drives the inner laminar flow and the turbulent flow while cooling drives the outer 
laminar flow. Thirdly, for T, and S, in region I1 and Td > 20deg, the entire flow 
reverses, so that a bidirectional laminar layer forms at  the top of the ice above a 
downward-flowing turbulent layer. 
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There are three previous pertinent laboratory studies of vertical ice walls melting 
in warm water. First, Sandstrom (1919) placed ice blocks in a tank of seawater to 
model the circulation driven by melting ice sheets during the spring in both the 
North Atlantic Ocean and Norwegian fjords. The far-field conditions of Sandstrom's 
experiments lie in region I1 of figure 1 ; for this case he describes a flow adjacent to his 
vertical ice face similar to that shown in figure 2. Second, Bendell & Gebhart (1976) 
measured the heat transfer to a vertical ice wall submerged in fresh water of uniform 
Ta for cases with T, both above and below the 4 "C density maximum. Because of the 
density maximum, a bidirectional flow may occur for T, between 4 "C and 8 "C. From 
temperature observations, they inferred the flow was upward for T, c 5.6'C and 
downward for warmer temperatures. From measurement of the weight change of the 
ice blocks, Bendell & Gebhart found the heat transfer to be a minimum at 55°C.  
Third, Huppert & Turner (1978) investigated the effect of a linear salt gradient a t  
20 "C on the convection; they found that the melting generated a nearly horizontal, 
layered convection pattern where each layer had a thickness of order 10 millimetres. 

There are also numerous laboratory, theoretical and numerical studies of the 
convection adjacent to a vertical wall driven by the diffusion of either single or 
multiple species. Gebhart & Pera (1971) and Josberger (1979) summarize the pertinent 
work. 

The present paper, following a brief discussion of the non-dimensional parameters in 
$2, describes in $3 a series of laboratory experiments where vertically-oriented blocks 
of freshwater ice melt in salt water for a variety of uniform far-field temperatures and 
salinities. Then after discussion of the experimental results in $4, $ 5  presents a model 
of the turbulent boundary layer, and $6 contains the discussion of the numerical 
solution of the governing equations. Finally, $ 7  describes an integral approach to the 
prediction of the high-temperature flow reversal, then compares the predicted reversal 
with the experimental results. 

2. Boundary-layer parameters 
For a laminar boundary layer adjacent to a flat plate, the magnitudes of the Prandtl 

number Pr, the Schmidt number Sc, and the Lewis number Le determine the relative 
thicknesses of the velocity, thermal and saline boundary layers (cf. Schlichting 1960). 
If a,, IS, and 8, are the boundary-layer thicknesses for velocity, heat and salt, then 

and - 8, 1( Led 2: 0.07; 
8, 

with the kinetic viscosity v = 1.8 x 10-6 m2s--1, the thermal diffusivity K = 1.44 x lo-' 
mss-1 from Neumann & Pierson (1966), and the saline diffusivity D = 6.3 x 10-lO 
me s-1, from Caldwell(l974). 

The much greater size of 8, compared with 8, given by (4c) shows that the opposing 
buoyancy forces act in different regions of the velocity boundary layer S,, which is 
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larger than both 8, and 8,. The upward buoyancy dominates the inner region while 
the downward buoyancy dominates the outer region; this buoyancy distribution 
produces a bidirectional laminar flow. 

Secondly, the transition to turbulence of vertical convective boundary layers 
depends on the magnitude of the Grashof number Gr, defined by 

where g is the acceleration of gravity 9.8 m s--2, pw is the water density at the ice-water 
interface, pm is the far-field density, and 1 is a vertical length scale to be defined below 
as the length of the laminar layer. Turner (1973) in his discussion of the heated vertical 
wall, gives lo9 as the critical value of Gr where the laminar flow becomes turbulent. 
For oceanic salinities and temperatures where significant melting occurs, Gr exceeds 
the critical value of lo9 for length scales greater than 0.5 m. 

3. The laboratory experiment 
In our laboratory study, the important parameters are the ambient water salinity 

and temperature, and the length of the ice wall. We easily model oceanic temperatures 
and salinities as well as 1 m vertical length scales in our experimental tank; for oceanic 
purposes we assume these results may be extrapolated to length scales greater than 
1 m. 

As figure 3 (a) shows, the experiments took place in a clear acrylic tank that measured 
0.45 m wide, 1.2 m long, and 1.25 m deep, which when filled contained approximately 
650 kg of a sodium chloride solution. To measure the solution salinity, we used both 
an American Optical and an Endeco refractometer, which were respectively accurate 
to 1.0%, and 0.2%,. The tank was located in a cold room; we controlled the water 
temperature by setting the room temperature to the desired value. 

The ice used in the experiments consisted of sheets of bubble-free ice frozen around 
an instrument array described below. The ice sheets measured approximately 0.2 m 
wide, 0.1 m thick, and varied in length from 0.5 to 1-2 m. We grew the bubble-free ice 
in an insulated tank measuring 0.4 x 0.6 m in cross-section and 0.4 m deep that had a 
cold plate on the bottom and two laboratory stirring motors mounted on the top. 
As the ice grew, the water motion created by the stirring motors swept away the air 
bubbles that formed at  the ice-water interface. When the ice thickness grew to half the 
desired value or 50 mm, the array was placed in the tank so that the ice froze around it. 
When the ice thickness reached lOOmm, we increased the cold plate temperature to 
+ 2 "C; the subsequent small amount of melting freed the ice from the tank bottom 
so that the ice was easily removed. To obtain 1.2 m long ice, we butted two 0.6 m long 
lengths of ice together in a cold room a t  - 15 "C while slowly pouring water at  0 "C 
into the joint. For this case the upper 0.6 m of the ice contained the array. Finally, for 
both long and short ice slabs, we smoothed one side of the ice with a laboratory hot 
plate to a surface that was planar to within 2 mm/m, and as figure 3 (a)  shows, bevelled 
the ice bottom to divert the buoyant water formed from bottom melting up the back 
side of the ice. 

To hold the ice in the tank, a 12.7 mm diameter aluminium rod screwed into the top 
of the plastic array and was attached with a laboratory swivel clamp to a similar rod 

1 5  F L M  I I I  
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FIQURE 3. For legend see facing page. 

fixed across the top of the tank. The clamp was then adjusted to bring the ice face 
parallel to the direction of gravity. During an experiment the vertical edges of the ice 
became rounded, but since the observed radius-of-curvature of the rounded edge was 
less than 10 mm, or much smaller than the cross-ice dimension of 200 mm; this rounding 
had little effect on the overall flow. 

The instrument array frozen into the ice consisted of ten precision thermistors and 
four ablation probes mounted on a plastic support. The support measured 0.5 m long 
with a cross-section of 12.7 x 12.7 mm; figure 3(b)  shows the arrangement of the 
thermistors and the ablation probes on the support. To prevent the hydrodynamic 
wake of one thermistor from interfering with another after the thermistors melt 
through, no two thermistors lay in the same vertical plane perpendicular to the ice 
surface. Each probe extended 15 or 20mm beyond the plastic support so that the 
probes melted through the ice at  different times during an experiment.Two thermistors, 
located at the same horizontal level, determined the horizontal variation of the 
interface temperature. 

The thermistors were Yellow Springs Instruments precision thermistors, no. 44007, 
with a time constant of 1 s and a dissipation constant of 8 mW K-l in a well-stirred oil 
bath. These thermistors were roughly spherical with a 2.4mm diameter, with their 
leads insulated with a 15 to 20mm length of snug-fitting shrink tubing filled with 
self-curing silicone rubber. We mounted each sensor on a 5 mm wide, 1 mm thick 
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FIGURE 3. (a) The experimental apparatus. ( b )  The thermister array: 
0, thermistor; 1, ablation probe. 

plastic strip of varying length, then fastened this strip to the main support a t  the 
required level. 

The four ablation probes were strips of plastic rule measuring 35 mm in length and 
3 x 1 mm in cross-section mounted on the array in a vertical plane perpendicular to 
the ice surface. Because the large index-of-refraction change at  the interface hindered 
sighting directly along the ice plane we tilted the ablation probes down at  a 10' angle. 
When viewed a t  a horizontal angle of 5" from the ice plane the probe and its reflected 
image in the ice formed an inverted V. To determine the ablation rate, we periodically 
measured the horizontal distance from the tip of the probe to the apex of the V with a 
Keuffel and Esser measuring transit, which had an accuracy of f 0.25 mm. 

To measure the far-field temperature and salinity, we used an array consisting of 
three thermistors, identical to those frozen in the ice, and three surgical tubes. The 
thermistors were mounted on a 1-2m long, 12.7 x 12.7mm plastic rod at  vertical 
separations of 0.25 m. To determine the far-field salinity, we drew water samples with 
a syringe from three tubes taped to the plastic rod such that each tube ended at one 
of the thermistor levels. Figure 3 (a) shows the position of the ice and far-field array 
in the tank. We placed this array 0.5 m from the ice so that the far-field array and the 
array within the ice spanned the same vertical distance. 

15.2 
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During an experiment we recorded all of the thermist,or resistances on magnetic 
tape with a Non-Linear Systems data acquisition system with a one minute scan rate. 
The accuracy of these measurements in temperature was & 0.02 deg. To visualize the 
flow, we introduced reflecting flakes made of finely-ground mother-of-pearl into the 
tank, then illuminated the suspension with a vertically oriented slit light source 
generated by a slide projector. The light entered the tank from the end near the ice 
slab and passed through the bubble-free ice to illuminate the flow; we viewed and 
photographed the flow field through the side of the tank normal to the light plane. 
Because the settling time of the flakes was of order days, the flakes accurately followed 
the convective motions. To prevent dissolution of the flakes, we made the water 
slightly basic by adding 0.2 kg of sodium bicarbonate to the water. 

Because the flakes rotate in the flow and thus may not be visible for the entire 
exposure, we also estimated the boundary-layer velocities through injection into the 
boundary layer of a neutrally buoyant mixture of Indian ink and salt water, then 
timing its motion past thermistors on the array. Also, the dye dispersion across the 
boundary layer gave us a thickness estimate. We obtained another thickness estimate 
by sighting across the boundary layer parallel to the ice surface at  a Moire grid. The 
large index-of-refraction change between the water near the ice and ambient water 
distorted the grid and made visible the edge of the boundary layer. 

To maintain homogeneous far-field conditions, we relied on both the large mass of 
water in the tank and a pumping and heating system. Figure 3 (a) shows the pumping 
system; the colder, less saline water generated by the melting ice was pumped from 
the surface through a constant temperature bath, then returned to the bottom of the 
tank behind a perforated diffusing screen. This screen allowed the water to mix in the 
tank without affecting the flow next to the ice. The pumping rate was of order 
100 mm3 s-l which produced an upward velocity in the tank of 0.15 mm s-l, or much 
less than the 10 mm s-l observed boundary-layer velocities. 

To summarize, a typical experiment proceeded as follows: We removed the ice 
from cold storage at - 1 5 O  C, then allowed the ice to warm to - 1 "C. This procedure 
took about 30min during which time the tank was first vigorously stirred, then 
allowed to come to rest to ensure homogeneous far-field conditions. We then connected 
the thermistors to the data acquisition system and began recording just prior to 
submerging the ice. Once the ice was submerged, the experiment began. During the 
experiment we measured the exposed lengths of the melt probes every 30minutes 
and drew far-field salinity samples. We also observed and photographed the flow 
using reflecting flakes and dye injections. The experiment ended when the ice melted 
past all of the thermistors frozen in the ice. After removing the array from the tank, 
we rinsed the array with fresh water, then calibrated it in a crushed ice and fresh-water 
zero-degree bath. 

4. The laboratory observations 
The laboratory experiments cover the range of oceanic salinities and far-field 

temperatures up to 27 "C. In  this section we first discuss the laminar and turbulent 
flows which occur for Td < 20deg, then the high-temperature flow reversal for 
Td > 20deg. 
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4.1. The laminar unidirectional and bidirectional Jlow for Td < 20 deg 

Along the lower portion of the ice we observed either bidirectional or unidirectional 
upward laminar flow, depending on the far-field conditions. As 5 1 describes, when S, 
and T, lie in the region I1 of figure 1, the flow is bidirectional; when S, and T, lie in 
region I of figure 1, the flow is unidirectional and upward. To determine the properties 
of the region I flow, we performed two experiments with far-field conditions 

T, = 0.06°C, &, = 14.2%,, and T, = 1.8OC, S, = 8%,. 

As figure 4 shows for the first experiment, in both cases an upward-flowing uni- 
directional boundary layer of order lOmm thick occurred. For these experiments, 
table 1 lists S,, T,, and Td, as well as both the observed T, and the values of 8, from 
equation ( l ) ,  which were vertically uniform, This uniformity suggests that a similarity 
solution to the governing equations will describe the observed flow. 

In contrast, when Ta and S, lie in region I1 of figure 1 the laminar velocity field is 
bidirectional consisting of a narrow upward inner flow next to the ice inside of a wider 
downward outer flow, Figure 2, a sketch, and figures 8 (a, b ) ,  streak photographs, show 
the observed flow. The two photographs show that immediately next to the ice there 
is an upward inner flow of order 1 mm thick which grows in thickness from the ice 
bottom; dye injections show the velocities in this region are of order 1 mm s-l. Two 
features on each photograph mark the edge of the upward flow; the apexes of the 
V-shaped streak trajectories, and the region of short streaks and dots a few milli- 
metres from the ice located between two regions of longer streaks. The arrows on the 
photographs point to several of the V-shaped trajectories, where the arrow shafts lie 
along the region of short streaks and dots. The streak trajectories suggest that water 
parcels move from the outer flow, through a region of no vertical motion, and into the 
inner flow. The photographs also show that the outer flow thickness is of order 10 mm 
and increases downward except near the ice bottom, where the flow constricts and 
curves slightly under the ice. These effects result from the absence of the wall which 
allows the flow to accelerate; hence through Bernoulli's law the flow narrows and 
curves under the ice. 

In the upper third of the inner flow, we observed small-amplitude waves with 
horizontal crests parallel to the ice surface at  the outer edge of the saline layer. These 
waves propagate upward with phase speeds of order 1 mm s-l and wavelengths of 
order 5mm. The wave amplitudes grow to approximately 3mm at which point the 
waves ' break' to form horizontal vortices with 3 mm diameters. Approximately 
30mm above the point at which the waves form vortices the inner flow becomes 
turbulent. On the ice beneath these waves and vortices, vertical grooves appear which 
are separated by approximately 28 mm and have a width and depth of order 1 mm. 
Gebhart (personal communication) attributes the groove formation to a secondary 
flow consisting of longitudinal rolls in the inner flow; however, we did not observe 
these rolls. 

At the level of transition to turbulence, we observe that the turbulent diffusion 
transported $oth dilute water and upward momentum away from the ice over a 
horizontal &stance comparable to the thermal boundary layer thickness. This upward 
buoyancy and momentum overwhelm the downward buoyancy such that the net 
result is an upward flowing turbulent boundary layer. The resultant divergence 
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(a) 

FIGURE 4. Unidirectional upward laminar flow, T, = - 0.4 "C, 
S, = 18%, 60 s exposure. 
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T, ("C) s m  (%o) T d  (deg) T w  ("C) s w  (%o) 

+ 0.05 14.2 0.78 - 0.66 12.8 
+ 1.80 8.0 2.50 - 0.29 5.6 

TABLE 1. Far-field and interface conditions for the two unidirectional experiments. 

between the upward turbulent flow and the downward laminar thermal flow produces 
a horizontal jet of ambient water flowing toward the ice. In figure 6 the jet appears as 
an approximately 100 mm wide horizontal band with speeds of order 1 mm s-l. The 
point labelled B at the ice-water interface marks the stagnation streamline and will be 
called the bifurcation point. Water in the jet above the bifurcation point enters the 
upward turbulent flow, while water below this point enters the downward thermal 
flow. The streak photographs show that the velocities in the jet are much greater than 
the suction velocities associated with either the laminar or turbulent boundary layer. 

As a result of these convective motions, the ice ablation proceeds as shown in 
figure 7 (a, b) .  At the ice bottom the ablation is high, then decreases with distance 
upward until the bifurcation point, where the ablation abruptly increases and a 
notch forms in the ice. Above the notch in the turbulent regime, the ablation is greater 
than in the laminar regime but less than that at the bifurcation point. 

Table 2 summarizes the observed properties of the laminar bidirectional flow 
experiments. The first four columns in the table list respectively the experiment 
number and the far-field conditions T,, S,, and Td; the fifth column lists the measured 
length of the laminar layer 1, which we define as the distance from the ice bottom to the 
bifurcation point where 1 is not listed, we did not photograph the ice. The sixth column 
lists Fw, which is the average of the interface temperature measurements for the 
laminar layer, and the seventh column lists P, which is p ,  divided by the far-field 
freezing point, or 

The table shows that P decreases from near 1 when the ice is close to equilibrium with 
the far-field conditions to near zero for Td > 9 deg. Finally, the last column lists Gr 
from ( 5 )  for the various runs, which we compute from (l) ,  the equation of state, and 
the other data in the table. The average Grashof number is 2 x lo8, or an order-of- 
magnitude less than the critical value given by Turner (1973) for turbulent transition 
of natural convective flows driven by either heat or mass diffusion. Our lower value 
probably results from the outer downward flow that enhances the velocity shear 
which further destabilizes the laminar flow. 

Next, figure 8 shows for each experiment the vertical variation of the unaveraged 
value of r as a function of the distance x divided by 1. Where table 2 does not list 1, we 
calculate it from the average Gr and the other listed data. Examination of the figure 
shows that the wall temperature is coldest at the bottom then slowly increases upward 
with a maximum variation of 20 yo for 3 < Td < 5 deg, corresponding to a temperature 
change of approximately 0.35 deg. For Td > 5 deg the variation of r with distance 
decreases because T, at any level approaches 0 "C. 

P = Fw/Tfp(S,). (6) 



450 E .  G. Josberger and S .  Martin 

FIQURE S(a). For legend we facing page. 
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(b 1 
FIQURE 5. Streak photographs of the bidirectional flow for T, = - 1.15 OC, 8, = 33.0% and 
a 60s exposure. (a) The upper portion of the ice; ( b )  the lower part. The top of ( b )  joins (a) 
at the level marked C. 



462 E.  0. Josberger and S. Martin 

FIGURE 6. Bifurcation of the horizontal jet ; the arrow labelled B marks the 
bifurcation point; T" = 2.2 "C; S ,  = 30.00/,, 30 s exposure. 
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4.2. The turbulent boundary layer above the bidirectional laminarfiw 

Our observations show that the flow above the bifurcation point is only upward and 
turbulent. The initial thickness of the flow is 10-30mm; the thickness also increases 
with distance from the bifurcation point. Dye injections show that the maximum 
upward velocity is of order 10 mm s-l, located 2-3 mm from the ice, and increases with 
height. The dye also shows that the outer edge of the layer fluctuates toward and 
away from the ice with the passage of turbulent eddies. 

Our thermistor records also give a qualitative description of the turbulent structure 
within the boundary layer. Despite the relatively large size of the thermistor beads, we 
assume that they give an accurate qualitative description for two reasons. First, the 
small thermistor response time allows the thermistors to detect some of the large 
temperature fluctuations in the turbulent flow. Secondly, visual observations of the 
flow give a description of the turbulent structure similar to that deduced from 
the thermistor records. Figure 9, a representative thermistor record, may be viewed as 
the temperature measured by a thermistor moving across the boundary layer at  a 
speed equal to the ablation rate and it shows several features of the flow. 

First, within 2 mm of the ice, no significant temperature fluctuations occur and the 
temperature increases monotonically. Secondly, in a region between 2 mm and 10 mm 
from the ice, the temperature fluctuations are as large as 0.5 deg, and the fluctuation 
magnitude increases with increasing distance. Thirdly, the large temperature fluctua- 
tions at  the outer edge of the boundary layer result from the wavering motion of the 
boundary between turbulent and quiescent fluid. Lastly, the thermal boundary-layer 
thickness of 10 mm roughly equals the momentum boundary-layer thickness observed 
by dye injections. 

Table 3 summarizes the observations from the turbulent flow experiments. The first 
four columns list the experiment number, and the far-field conditions T,, 8, and Td. 
The fifth column lists T,, where we found that its measured values were constant to 
within 0.02 deg along the interface for any particular experiment, in contrast to the 
laminar flow where Tw increased with height. The sixth column lists x, which we now 
define as the distance above the bifurcation point at  which we measured the melt rate 
M listed in the seventh column. Finally, the last two columns list No, which is the 
product of M and x4, and go, which is the average of M, for each experiment. 

To discuss first the temperature data, figure 10 shows the dependence of the normal- 
ized interface temperature r (see equation (6)) on Td. The open squares are the observed 
values of r for 0 < Td < 20deg and the dashed line is the curve 

( 7 )  
The data suggest that for Td < 9deg, r decreases linearly with increasing Td and 
for Td > 9deg, r approaches zero. 

To next discuss the ablation, figure 7(a)  shows a representative ice profile after 
melting for 220 min at Td = 3.1 deg and figure 7 (b) shows the measured melt rates from 
this experiment. For all experiments the ice melted aa shown in figure 7 (a); the melt 
rate is greatest at the bifurcation point then slowly decreases with distance above the 
bifurcation point. This combination of a vertically varying melt rate and the uniform 
wall temperatures strongly suggests that the flow can be described by a xi similarity 
transformation. In this transformation, which $ 5  develops, the melt rate decreases as 

r = 1.0 - tanh (0.15Td). 
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FIGURE 7(a). For legend see facing page. 
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FIQIJSE 7. (a) Ice shape after melting for 220 min, T, = 1.5 "C, 8, = 29.0%,. Dashed line 
indicates original ice shape. (a) Measured melt rates for the ice in (a). 

- 0.5 29-0 1.08 - 
- 0-72 33.7 1.13 260 
0.0 29.0 1-05 300 
1.55 29.0 3-13 270 
2.20 30.0 3.83 180 
2-70 29.0 4.28 - 
2.66 34.4 4.55 155 
6.85 34-0 8.7 1 110 

- 1.53 
- 1.81 
- 1.49 
- 1.11 
- 0.97 
- 0.80 
- 1.03 
- 0.32 

0.88 
0.90 
0.86 
0.64 
0-54 
0.46 
0.50 
0.16 

1.5 
2.8 
5.1 
2.0 

1.6 
0.2 

TABLE 2. Properties of the laminar bidirectional experiments, 
see text for further description. 

2-i. To check this hypothesis, the eighth column in table 3 lists the observed M 
multiplied by zi. Examination of this column shows that, except for experiments 4 
and 5 where H, varies by 20 yo, M, is constant to within 8 %. If we assume that this 
large variation in M, for experiments 4 and 5 is caused by preferential melting around 
the melt probes, then the data supports the hypothesis that M has a &-power de- 
pendence on 5. 

Figure 10 also gives the melt rate data where the circles are the observed values of 
a, and the solid line is discussed below. Examination of the figure shows that the 
dependence of go on Td changes from a non-linear to a linear dependence in the 
vicinity of 9 deg. For Td < 9 deg, 

( 8 )  H, = 0.76T26 x 1 0-3 mmf b-l, 
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Experiment T, 8, 
number ("C) (X) 

1 - 0.10 29-9 
2 1.55 29.0 

3 2.00 30.0 

1.53 - 1.27 
3.13 -0.92 

3.63 -0.76 

4 2.20 30.0 

5 2-66 34.4 

6 3.42 30.0 

7 6.85 33.95 

8 10.85 34.1 

9 16.31 35.2 

3.83 -0.76 

4.55 -0.74 

5.05 -0.59 

8.71 -0.59 

12.72 -0.06 

18.24 -0.02 

'2' 

(mm) 

360 
70 

200 
510 
610 
940 
115 
250 
180 
330 
470 
520 
760 
220 
360 
240 
370 
290 

M 
(Pn 8-l) 

0.58 
1.22 
1.02 
1.57 
1-56 
1.40 
1.87 
1-89 
2.15 
2.23 
2-47 
2.23 
2.09 
6.29 
5-99 
9.58 
9.16 

14.27 

M,x103 %f,,x109 
(mm% 8-1) (mmt 9-1) 

2.5 2.5 
3.5 3.7 
3.8 
7.5 7.7 
7.8 
7.8 
6.1 6.8 
7.5 
7.9 8.7 
9.5 

11.5 11.0 
10.6 
11.0 
24.2 25.2 
26.1 
37.7 39.0 
40.2 
58.9 58.9 

TABLE 3. Far-field conditions, ice-water interface temperatures and 
melt rates for the turbulent flow experiments. 

while for 9 < Td < 20 deg, 

H,, = (3.5511, - 5.89) x mm% t3-l. (9) 

The change in melt rate at Td 21 9 deg results from the buoyancy and heat-transfer 
dependence on AS = S, - S, and AT = T, - T,. To explain this change, we assume 
that the melt rate is proportional to the product of AT and a transfer coefficient that is 
an increasing function of the net buoyancy. For Td < Sdeg, figure 10 shows that both 
A T  and AS increase nearly linearly with increasing T,; because salinity primarily 
determines the density, the buoyancy also increases with T,. Therefore the combination 
of an increase in both AT and net buoyancy gives a melt rate that depends nonlinearly 
on Td. For Td > 9 deg, since S, has approached zero, the net buoyancy remains almost 
constant but AT continues to increase with increasing T,. Therefore, the melt rate 
increases linearly with Td. For Td > 20 deg the thermal effect on density overwhelms 
the saline effect and produces the high-temperature flow reversal discussed in the 
next section. 

4.3.  The high temperature flow reversal 

For T, > 20 deg our experiments show that the flow reverses; the flow consists of a 
laminar bidirectional boundary layer at  the top of the ice above a downward flowing 
turbulent boundary layer. In addition, the ice ablates smoothly in the laminar region, 
but irregularly in the turbulent region where cusps appear in the ice surface. 

To investigate the flow at temperatures near T, = 20 deg, we performed two quali- 
tative experiments close to the predicted flow reversal line derived below in $ 7 .  In 
both cases the flow was unsteady with both up and down flow; generally the flow 
consisted of an inner upward-flowing layer near the ice inside of an intermittent 
downflow. In one case, the melting cooled the tank sufficiently so that the flow settled 
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FIQURE 10. Experimental values of T,/T,,  (0 )  and a,, (0 )  for the turbulent flow. 

into the pattern observed for Td c 20 deg. In the other case, Td was large enough 
that cusps appeared on the ice and a flow reversal occurred. 

We performed two experiments a t  Td > 20 deg, Td = 27.7 deg, and 26-6 deg; 
figure 11 is a sketch of the observed flow and the resulting ice shape. At the top of 
the ice, we found a 60 mm long laminar bidirectional layer with a 1-2 min thick 
upward inner layer inside of a 10-20 mm thick downward outer layer. The ice adjacent 
to this flow melted smoothly. Below this laminar flow we observed a 20-30 mm thick 
turbulent downward-flowing boundary layer that grew in thickness; the ice adjacent 
to this layer melted irregularly to produce cusps. Figure 12 shows the smooth ice at  
the top and the cusped region below; at  the beginning of the experiment, this piece 
of ice was planed smooth; we took the photograph after the ice had been submerged for 
23 minutes in salt water at  24.8 "C and 33.6%,, or Td = 26-6 deg. 

The vertical lengths of the cusps grew longer as the experiment progressed. Initially, 
well-ordered cusps form within 12min from the beginning of an experiment with a 
vertical length of 10 mm and a cross-stream length of 20 mm. After 30 min the cusps 
are disorganized with equal vertical and cross-stream lengths of approximately 30 mm. 
In both cases the cusps were larger where the boundary layer is thicker. The depth of 
the cusps also increased with time to a final depth of approximately 5 mm. 
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\ 

I 
FIGURE 11. A sketch of the flow observed for Td > 26 deg. 

Dye injections into the cusps show the presence of a back eddy in the cusps as 
illustrated by the small arrows in figure 11. The dye flowed upward and then outward 
at  the crest of the cusp, then downward in the mean flow. Occasionally, some dye 
flowed over a crest and into a higher cusp before being swept downward. We observed 
no net upward flow adjacent to the ice in the turbulent portion of the boundary layer. 

To estimate the melt rates in these experiments, we measured the ice thickness 
before and after the experiment. Because of the irregular shape of the ice these measure- 
ments give only an estimate of the melt rate. The melt rate for T, = 24.8"C and 
S, = 33.6%,, Td = 26.6 deg, was 48.6pms-l; the melt rate for T, = 264°C and 
8, = 31-0%,, Td = 27.7 deg, was 3 1 * l p m ~ - ~ .  For the second experiment, the values 
of T, were all equal to - 0.02 "C so that nearly fresh water is found at the wall. 

5. The governing equations 
To investigate the oceanographically interesting case of the turbulent upward flow, 

we next numerically solve the governing equations in similarity form. The governing 
equations consist of the mass conservation equation, the momentum equation, the 
two diffusion equations for salt and heat, and the equation of state from Gebhart & 
Mollendorf (1977). For our case, these equations take the following form: First, in- 

(10) 
compressibility gives V.B = 0. 
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FIGURE 12. Ice shape after melting for 23 min, T, = 24.8 "C, S ,  = 33.6 x0. 
Note smooth upper portion and cusped lower portion. 
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Secondly, following Tennekes & Lumley (1972), the mean momentum equations of a 
Boussinesq fluid in two dimensions with x vertical and y normal to the ice are 

where u, v are mean velocity components; u’, v‘ are turbulent velocity fluctuations; p 
is pressure; po is the undisturbed density; and p“ = p”(8, T )  is the density perturbation 
due to changes in the mean salinity and temperature. Thirdly, because the salt and 
heat diffusion equations have the same form, we only write the salt diffusion equation as 

as as as 
-+u-+v- = D at ax ay 

where primes denote turbulent fluctuations. 
To simplify equations (11 a-c), we first neglect the normal turbulent stresses as these 

terms transport little mean momentum. Then, because our laboratory observations 
show that the ratio of the flow thickness to the ice block length is of order 10-2, we make 
the boundary-layer approximation. Next, we model the turbulent transport processes 
with an eddy diffusivity that varies with both position in the boundary layer and the 
thermal driving. In this simple model we assume that the diffusivities of momentum, 
heat and salt are equal because turbulence is a flow property that acts to transport 
quantities equally. The model in this case is 

(12a, b, c )  

where the eddy diffusivity A is a function of x, y and Td. 
Fourthly, because our laboratory observations show that the melt rate and the 

mean flow adjacent to the ice are steady, we transform (1 1) to a moving co-ordinate 
system fixed to the ice-water interface to remove the time dependence. With the 
interface position given as yi = ~ ( x ,  t ) ,  we write 

ag 
y = a(x,t)+y,, v = v,+- (13% b )  at 9 

where yr and v, are respectively the y co-ordinate and the y velocity in the moving 
frame. With the substitution of (12) and (13) into (1 l ) ,  the governing equations with 
the subscript r dropped for clarity become 

and 
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The boundary conditions for a melting or freezing liquid-solid interface follow from 
the application of the no-slip condition, the freezing condition, and the conservation 
of mass, heat and salt. For a curved interface, LaPadula & Mueller (1970) and 
Josberger (1979) derive the boundary conditions. In  the present study, because the 
surface in the turbulent region is almost flat, we use only the following five one- 
dimensional boundary conditions, each of which applies at  y = 0. 

First, the no-slip condition is 
u = 0. (15) 

Secondly, following Frank (1950) and Sekerka (1973,s 16.2) T, and S, must lie on the 
freezing curve ( l ) ,  or 

and thirdly, the salt flux condition is that 

Tw= -mS W2 (16) 

Fourthly, from Carslaw BE Jaeger (1959) the heat flux at  the interface, on the assump- 
tion of no heat conduction in the ice interior, is 

aT aa 
aY 

K- = - LpdX at y = 0, 

where L = 3-3 x 105 J kg-1 and pc = 920 kg m-8. Finally, the mass flux normal to the 
ice must equal the flux introduced by the melting, so that 

(19) 

Next, the boundary conditions at  infinity are 

u =  0, s=s,, (20a, b)  

and T=T, at Y = W .  (204  

To simplify further the governing equations we introduce a stream function defined 

and replace T and S with normalized non-dimensional variables given by 

With (21) and (22), the following similarity transformation reduces equations (14a-a) 
to ordinary differential equations: 

$ = a.Pf(q), A = x‘ -4 (7 ,  T d ) ,  (23% b )  

where f, A,, # and 8 are unknown functions, 7 is the similarity variable, and a, b, p ,  
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q and T are unknown constants. Because our laboratory observations show that S, 
and T, have no measurable x-variation, we assume # and 8 are functions of 7 only. 

Substitution of (21)-(23) into (14b)  with the requirement that the resultant equa- 
tion be independent of x,  gives 

Because r = 0, A(x,  y, Td) = A,(r], Td), so that in the following we drop the subscript 
on A,. 

p = i ,  q = i  and r = 0 .  (24) 

With a and b defined as 
- d P W  - PalP 

P m  4v2 
a = 4vb, b = 

and po = pal, the transformed momentum equation becomes 

where primes denote differentiation with respect to 7. 
With the same substitutions, the diffusion equations (14c-d) become 

and - 

With 9 E 0 and A = 0, equations (26) and (27) reduce to the laminar equations for 
convection adjacent to a heated wall given by Ostrach (1953). 

Transformation of the far-field boundary conditions gives 

(28) f ' = O ,  # = O ,  and 8 = 0  a t  7=m. 

A t  the ice-water interface the no-slip condition becomes 

f'(0) = O  at = 0; 

and the freezing curve condition becomes 
(29) 

# = 8 = 1  at ~ = o .  (30) 

To complete transformation of the wall boundary conditions (17)-( 19), we take 

where Mo is specified by the laboratory data of equations (8)-(9). With equation (31), 
the boundary conditions (17)-( 19) become 
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6. The turbulent model 
To model the turbulent transport processes we follow Townsend’s ( 1976) discussion 

of the turbulent structure of a wall jet. For a wall jet, the position of the mean maximum 
upward velocity divides the flow into an inner and an outer region. In the inner region 
the turbulence has the characteristics of wall turbulence next to a smooth wall as 
originally proposed by Prandtl. The inner region further divides into a viscous sub- 
layer where molecular transport processes dominate and a region where the eddy 
diffusivity increases linearly with distance from the wall. In the outer region, the 
turbulence has the characteristics of free turbulence; the eddy diffusivity is constant. 

Mathematically, we formulate this model as 

A(7,Td) = 0 for 0 < 7 < A7, ( 3 3 4  

A(7,Td) = [1-sech(y(7-A7))1 for 7 2 All, (33b)  

where the viscous sublayer thickness is A7 and y is a shape factor. We also assume 
that A ,  contains all the T,-dependence. 

In  this model at a given Td, A remains constant as 7 increases beyond the boundary- 
layer thickness instead of decreasing. However, the solution to the equations remains 
unaffected because the gradients of momentum, heat and salt are zero outside the 
boundary layer and therefore the diffusive fluxes are zero regardless of the value of 
the diffusion coefficient. Keeping A large outside the boundary layer simplifies the 
numerical integration of the equations by allowing the use of a large integration step 
size which speeds the computations. Many investigators have used similar schemes 
successfully (cf. Betchov & Criminale 1964). 

6.1. The numerical scheme 

To solve the seventh-order nonlinear governing equations with implicit boundary 
conditions we used the quasi-linearization scheme of Radbill & McCue (1970), which 
Josberger (1979) describes in detail. In our case, specification of the boundary condi- 
tions at  7 = 0 and 7 = co gives a two-point boundary-value problem, where we apply 
the 7 = 03 boundary conditions a t  7 = 20, a distance which corresponds to approxi- 
mately three times the observed boundary-layer thickness. Numerical iteration to a 
solution continues until the difference between successive iterations is less than 
5 x 10-3. To check the sensitivity of the solution to the convergence parameter we ran 
duplicate cases with the convergence parameter equal to 5 x 10-3 and 10-3 and found 
no discernible differences between the solutions. 

6.2. The numerical results 

The numerical results show that both blowing and opposing buoyancy forces must be 
included in the analysis to model adequately the flow. Josberger (1979) contains the 
computer tabulations for 0 < 7 < 20 and 2 < Td < 12 deg; here we present only the 
graphical results. We base our numerical calculations on the values of $’ (O) ,  O ’ ( O ) ,  
f ’ ( O ) ,  a, and b which we list in table 4 for different values of Td and which we derived 
from the smoothed laboratory data. To evaluate the turbulent parameters at  the 
appropriate Td)s, we varied A ,  y, and A7 until the computer-generated values of 
#’(O) ,  B’(O), and f‘(0) equalled the laboratory values. We also required that the 
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2 - 5.02 - 0.556 - 0.26 11.0 1-53 
4 - 4.67 -0.720 - 0.68 12.8 1.78 
6 - 3.83 - 0.837 - 1.24 13.7 1.90 
8 - 2.93 - 0.937 - 1.92 14.2 1.97 

10 - 2.04 - 0.982 - 2.59 14.4 2.00 
12 - 1.33 - 0.989 - 3.22 14.5 2.02 

TABLE 4. Values of $iab(0), O;ab(0),.fkb(O), a and b 
computed from the smoothed laboratory data. 

solutions had to yield only upward flow and give a boundary-layer thickness of 
approxima,tely 10 7 units. 

At Td = 4 deg with y = 1.5, we found that variations of A have a larger effect on 
O'(0) than on q5'(0) while the opposite holds true for variations of AT; this results from 
the large Lewis number. The relatively large K allows the cooling to diffuse through the 
laminar region into the turbulent region where the turbulence has a large effect on the 
heat transfer. The relatively small D contains the saline anomaly close to the ice 
where changes in A7 greatly effect the salt distribution. For the model a t  Td = 4 deg 
we chose A ,  and A7 equal to 0.28mm2s-l and 0.078, respectively, because these 
values gave an average error in the salinity and Lemperature gradients of less than 5 yo. 

To determine the dependence on Td of A,, we assume it depends on an unknown 
power of the non-dimensional buoyancy, so that 

where pw is the interfacial water density, pr is the freshwater density, n is an undeter- 
mined exponent and C, is a constant. To write (34) in terms of Td, we assume p is a 
linear function of S .  Then using equation (17) and (16), (34) becomes 

(35) 
To determine the coefficient n, we numerically solved the governing equations for 

Td equal to 2, 4 and 8 deg, and for three values of n: 1.0, 1.5 and 2.0, with A7 held 
constant at  0.09. For each value of n, we adjusted C, to make A ,  a t  Td = 4 deg equal to 
0.28 mrn2s-l. Figure 13 compares the smoothed experimental data with the results 
from each set of calculations. The heavy solid line is the locus of experimental points. 
Each tick mark on this line represents the boundary conditions for consecutively 
increasing Td, beginning at  2 deg at  the lower right and ending a t  12 deg at the upper 
left. The arbitrary division of melt rate dependence on Td given in (8) and (9) 
produces the kink at  Td = Sdeg. The symbols x and A give the solutions for n = 1.0 
and 1.5; both curves yield temperature and salinity gradients that are too low at 
Td = 8 deg and too high a t  2 deg. The final form of the turbulent model is 

A,  = C, [tanh (0.15Td)]". 

and 

y = 1-5, n = 2, by = 0.078, 

C, = 0.922 mm2 s-l. 
(36) 

The open circles in figure 13 denote the results of this model where the number inside 
of each circle is the ql for each computation. The magnitude of the eddy diffusivity, 
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e l  (0) 
FIGURE 13. Locus of points from the smoothed laboratory data, and three models of the eddy 

diffiisivity: 0, final eddy diffusivity model (equation (36)); x , n = 1.0; A, n = 1.5. 

1) 

FIGURE 14. Computed profiles off' for: - - - -, Td = 2 deg; 
.- , T, = 4 deg; - - -, l',, = 8 deg. 

C,,, is approximately one half the value of the laminar viscosity which demonstrates 
the weak nature of the turbulence. 

In this model, we fix y a t  1-5 to satisfy the condition that A reaches its maximum 
value in the region of maximum upward velocity. To illustrate, figure 14 gives the f' 
profiles using (36) for Td = 2 , 4  and 8deg; we omit the profile for Td = 12deg because 
it is nearly identical with that a t  8deg. 
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f L x  x lo2 f(c0) x 1 0 8  
A A 

f \ f \ F(m)  
No No (mmP s- 1) 

T d  
(dog) p(S, T )  blowing p(S) p(S, T )  blowing p(S) p(S, T )  

2 1.26 1.13 1.45 5.50 4.30 8.04 0.60 
4 1-93 1.55 2.3 1 10.8 8.60 11.90 1.38 
6 2.30 - 2.88 12.3 - 14.7 1.69 
8 2.50 1.26 3.39 13.6 3.34 17.6 1-93 

10 2.57 - 3.69 13.8 - 18.2 1.99 
12 2.52 - 4.02 13-2 - 19.7 1.91 

TABLE 5. The turbulent-flow t.ransport properties for three cases: opposed buoyancy forces 
with blowing, p(S, T); opposed buoyancy forces without blowing; and density as a function of 
s only, P W ) .  

The figure shows that the maximum velocity occurs for 0.7 < Q 2-0; for y = 1-5, 
A (7) attains 90 % of its maximum value in the required region for Td > 2 deg. For 
Td < 2.0deg, the position of the maximum velocity is so close to the wall that  the eddy 
diffusivity has little direct effect on the momentum distribution. Hence, to  simplify 
the calculations over the entire temperature range, we kept y constant for all Td. 

Figure 14 also displays the momentum boundary-layer characteristics. If we define 
the momentum boundary-layer thickness 8, as that distance from the wall where f ' 
drops to  10 yo of its maximum value, then figure 14 shows that S, is almost constant for 
all Td. The figure also shows that 8, equals approximately 11 7-units; this corresponds 
to approximately 25 mm which agrees with the laboratory observations. The constant 
value of 8, for different Td's results from the values of A ,  which are always less than 
the molecular diffusivity; hence a t  all Td, Y determines 8,. 

Next, table 5 lists for both the present case labelled p(S, T) and for two other cases 
discussed in the next section, certain flow properties as a function of Td. For these 
cases, the table lists the maximum value off', fAa,, and the non-dimensional upward 
mass transport, f(co). The last column also gives the dimensional transport F(co). For 
the present case, columns 2 and 5 show that both f,',,, and f (CQ) increase almost linearly 
for 2 < Td < 8 deg; this results from the almost h e a r  increase in buoyant forcing for 
this range of Td. Above Td = 8deg the buoyant forcing is almost constant so thatf,',,,, 
and f (co) remain nearly constant except for a slight decrease a t  Td = 12 deg which is 
the result of the increasing temperature effect on density at high temperature. 

To compute the upward transport per unit width, (23a) evaluated a t  y = co gives 

(37) 
where a is defined by (25) and given in table 4. The last column in table 5 lists F(co), 
which figure 15 also plotsfor0 < Td < 4 deg. The upward transport from a vertical wall 
in salt water of an arbitrary temperature and uniform salinity can be calculated from 
figure 15 and equation (37). For example, our laboratory case ofa  0.5 m long boundary 
layer next to an ice slab 0.2 m wide in water a t  Td = 4deg, gives from (37) an upward 
transport of 0.13m3 after 1 hour. Because the ice has two sides the upward transport 
must be doubled to give 0.25 m3. With our experimental tank having a cross-sectional 
area of 0.54m2, the convection after one hour replaces the water in the upper 0.4m 
with cool dilut,e water. To counter the effects of this vigorous upffow, we used the 

Y(co) = az'f(co) = &F(co), 
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FIUURE 15. Computed values of p(m)  for T, < 4 dog. 

pumping and heating systems previously described to maintain uniform conditions. 
In  a second example, we apply these results to an iceberg with a 100 m vertical length 
scale floating in water a t  Td = 2 deg. The resulting upward transport is 294 m2 day-' 
per waterline metre. If the iceberg has a circumference of l k m  then the total 
upwelling equals 2.9 x lo5 m3 day-'. Hence, upwelling driven by melting icebergs as 
proposed by Neshyba (1977), may have a significant impact on the physical and 
biological oceanography of the polar seas. 

Next, figure 16 gives the profiles of 4 and 8 for a thermal driving of 4 ,8  and 12deg. 
The two most important features are the difference between 8, and 6, and the thicken- 
ing of each boundary layer as the thermal driving increases. The difference in the 
boundary-layer thicknesses results from the low turbulence levels and the large Lewis 
number. The laminar region adjacent to the ice and the small value of D act to contain 
95 yo of the saline anomaly to within 1 7 unit of the ice wall, with the remaining 5 yo 
spread out by the eddy diffusivity 4 or 5 7. Even though 6, >  IS^, the large effect of 
salinity on density and the combined diffusion of upward mDmentum and saline 
anomaly out from the wall overwhelm any downward thermally produced momentum. 
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q 
FIGURE 16. Computed profiles of @ and 0 for: - - - -, Td = 4 deg; 

-, T, = 8 deg; - - -, T, = 12 deg. 

6.3 .  The effect of neglecting blowing and opposing buoyancy forces 

To determine the effect of blowing a t  the ice-water interface we set the velocity normal 
to the ice to zero so that (32c )  becomes f(0) = 0 a t  7 = 0 and resolve the equations 
using identical turbulence parameters. On figure 17 the circled numbers and the broken 
lines show the effect of no blowing on qY(0) and Of(0); while the heavy solid line shows 
the results of the calculations with blowing a t  the interface. Comparism of the two 
cases shows for the no-blowing case that as Td increases, q5'(0) and B'(0) become more 
negative corresponding to both higher salt and heat fluxes to the ice. Table 5, which 
lists in columns 3 and 6 the values of and f(m) for the no-blowing case, shows that 
these values are much smaller and begin t o  decrease a t  lower values of Tl than in the 
blowing case. 

Secondly, to investigate the effect of opposing buoyancy forces on the model, we 
re-solve the governing equations with blowing and the same turbulent parameters 
but with the buoyancy determined by 

P = P m  - P(& - 81, (38) 

so that the density in only a function of S and the temperature diffuses passively. I n  
figure 17, the squares connected by the dashed line show the effect of opposing 
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FIG~RE 17. The effects of blowing and opposing buoyancy forces on #'(O) and &(O) at various Td: 
-, results including both blowing and opposing buoyancy forces; - -, no blowing; - - - -, 
density only a function of salinity. 

buoyancy forces on q5'(0) and tY'(0) for Td from 2 to 12deg. Comparison of this curve 
to the heavy solid line shows that for the case of density as a function of salinity only, 
the values of q5'(0) remain almost constant while the values of el(0) become more 
negative corresponding to a higher heat flux to the ice. The values of fAax and f(c0) 
listed in table 5 for this case show that neglecting of the temperature effect on density 
also increases the transport. 

Returning to our original turbulent model, our calculations are valid for Td < 12 deg ; 
efforts to extend the model to Td = 14 deg gave significant downward flow and values 
of qY(0) and el(0) that disagreed with the smoothed laboratory data. Calculations at 
Td > l6deg failed to converge numerically. Because the observed flow reverses 
direction for Td > 20deg, one expects the numerical model based on upward flow to 
break down at high temperatures. 

7. The high-temperature flow reversal 
From the theoretical flow model, we next calculate the theoretical location in T-S 

space of the flow reversal observed at Td > 20 deg, then compare the results to those of 
Gade (1979) and Greisman (1979). In our case, we assume that the flow reverses when 
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FIGUF~E 18. A T-S diagram showing the location of the flow reveml line, 2, as predicted by 
equation (41) and &B predicted by Gade (1979) and Greisman (1979), line H .  The points give the 
far-field conditions ; the arrows, the turbulent flow direction. 

the buoyancy integrated across the boundary layer changes sign from positive to 
negative. 

Hence, we define the net buoyancy B as the density anomaly integrated across the 
boundary layer, where 

In order to calculate from (39) the T, and S, that yield B = 0, we use the following 
linear equation of state: 

(40) P = Pal 11 +/w - 8,) + a(T - Tm)I, 
where a is evaluated at 8, and T, to simplify the calculations and to give the maximum 
effect of temperature on density. Substitution of (22) into (40), use of the similarity 
transformation, and setting S, = T, = 0 which is valid for T, > 10 "C, gives 

From our flow model at the highest valid thermal driving, Td = 12 deg, we evaluate the 
ratio of the two integrals on the left-hand side of (41) &B equal to 0.187. This simplifi- 
cation yields for a particular S, a transcendental equation for T,. 
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An iterative technique solved (41) for S, < 40%,; figure 18 shows the position of the 
zero net buoyancy curve, labelled 2, on a T-S diagram. For far-field conditions that 
lie below Z, the net buoyancy is upward; for far-field conditions above Z, the net 
buoyancy is downward. Because we msume 8, = T, = 0 and because the linear 
equation of state becomes increasingly erroneous at  low temperatures, we only plot 
Z for T, > 10°C. 

Secondly, the curve labelled H on figure 18 shows the location of the flow reversal 
line predicted by both Gade (1979) and Greisman (1979). To predict this line they 
allow one gram of ice to melt in a given mass of salt water then calculate the position 
on a T-8 diagram of the zero density change. In  their model, the cooling and dilution 
effects are equally mixed in the final water volume, while in our dynamic model, 
integration of the buoyancy across the flow retains the effect of the different tempera- 
ture and salinity distributions. This accounts for the difference between the curves 
Z and H .  

Thirdly, the points on figure 18 show the far-field conditions of the various experi- 
ments, where the arrow at each point indicates the turbulent flow direction. The dark 
circles are our experiments, the open circles were done jointly with Dr Herbert 
Huppert in our laboratory during September 1978. For the upward flowing caaes the 
ice melted smoothly and there was a laminar bidirectional flow at the bottom of the ice. 
For the downward flowing cases cusps formed in the ice and there was a laminar bi- 
directional flow at the top of the ice. In all cases, the flow direction agrees with both 
theories. 

The figure shows that the present data are insufficient to determine the validity of 
either model; a complete series of experiments over a wider range of temperatures and 
salinities would provide useful insight on the interaction of opposing buoyancy forces 
and the resulting flow direction. 
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